NUEVA GUÍA PRÁCTICA del LABORATORIO MICROBIOLOGICO de AGUAS y ALIMENTOS (X Parte)

“El médico del futuro no tratará el cuerpo humano con medicamentos, más bien curará y prevendrá las  enfermedades con la nutrición" 
(Thomas Alva Edison)



NUEVA GUÍA PRÁCTICA del LABORATORIO MICROBIOLOGICO 
de AGUA y ALIMENTOS (X Parte)






b. ALTERACIONES EN PRODUCTOS LÁCTEOS

Incluso cuando se obtiene en condiciones de asepsia, la leche contiene siempre microorganismos que proceden de los conductos galactóforos de la ubre de la vaca. Su número varía de cuarto a cuarto y de vaca a vaca, pero aproximadamente oscila entre 102 y 103 microorganismos por ml. En la práctica, la leche recién obtenida contiene unos 5 – 103 a 5 – 104 microorganismos por ml, constituidos por contaminantes procedentes del entorno de la ubre, del equipo de ordeño y de los manipuladores. Son muy variados los microorganismos que puede haber, entre ellos, Pseudomonas, Acinetobacter/Moraxella, Flavobacterium, Micrococcus, Streptococcus, Lactobacillus y coliformes. Además debe señalarse que las ubres infectadas (mastitis) introducen en la leche bacterias potencialmente patógenas. Dado que la leche es un medio de crecimiento ideal para las bacterias, debe enfriarse tan rápidamente como sea posible. La introducción en las granjas, en los últimos 25 años, de tanques de refrigeración para toda la leche producida, junto con su recolección en cisternas refrigeradas ha influido mucho en la calidad bacteriológica de los aportes de leche cruda. 


La principal consecuencia de este cambio ha sido la disminución de la cantidad de leche alterada por acidificación. La acidificación o cortado de la leche a las temperaturas corrientes se debe a las bacterias lácticas que crecen preferentemente a temperaturas mayores de 10 ºC. Estas bacterias originan ácido láctico, a partir del azúcar de la leche (lactosa), que da lugar a un sabor ácido y más tarde a la coagulación de la leche. La mayoría de las bacterias lácticas se destruyen por pasterización, pero unas pocas son termodúricas (por ej., Streptococcus thermophilus) y pueden causar problemas después de la pasterización. Al enfriar y refrigerar rápidamente la leche los problemas son algo distintos. En la actualidad son los psicrótrofos, sobre todo pseudomonas, los principales responsables de los problemas alterativos. Las bacterias psicrótrofas, que proceden originalmente del suelo y agua, se aíslan frecuentemente del equipo de ordeño de la granja, de las conducciones y de las cisternas de transporte. La refrigeración deficiente o el retraso en el enfriamiento de la leche aumenta mucho la proporción de psicrótrofos, pero su crecimiento continúa, aunque más lentamente, a las temperaturas de almacenamiento recomendadas para la leche cruda (3 – 7 ºC). Los recuentos de bacterias psicrótrofas en los tanques de almacenamiento varían de 104 a 106 por dm2, dependiendo de la intensidad y tipo de contaminación y de las condiciones de almacenamiento. Una gran proporción de estos psicrótrofos produce proteasas y lipasas y muchos de estos enzimas no son afectados por la pasterización; de hecho para inactivarlos se necesitan temperaturas de 150 ºC durante 10 segundos. Entre los defectos debidos a las proteasas se incluye el amargor, siendo el enranciamiento el principal efecto deteriorante de las lipasas.



El proceso de esterilización implica el calentamiento de la leche a una temperatura lo suficientemente alta como para destruir todas las bacterias patógenas, como Mycobacterium tuberculosis, Salmonella sp. y Brucella sp. al mismo tiempo se destruye la gran mayoría de otras bacterias, incluidas las alterantes por lo que aumenta la capacidad de conservación de la leche. La mayoría de la leche producida en el los principales países productores y exportadores, se pasteuriza por el método de temperatura alta / tiempo corto (HTST) en el que la leche se mantiene a 72 ºC por lo menos 15 segundos y a continuación se enfría rápidamente a menos de 10 ºC; el método antiguo de temperatura baja / tiempo largo (LTLT) (63 ºC durante 30 minutos) todavía se utiliza ocasionalmente, pero a escala muy pequeña.  Las bacterias que resisten la pasteurización, debido a su termorresistencia innata, reciben el nombre de «termodúricas». Están constituidas fundamentalmente por unas pocas especies de Streptococcus (por ej., S. thermophilus), Micrococcus (por ej., M. luteus) y Corynebacterium (por ej., C. lacticum), junto con las esporas de ciertos Bacillus sp. sobre todo B. cereus. Estas bacterias se aíslan fácilmente del equipo lactológico y tuberías limpiados deficientemente, si bien su número en los tanques de almacenamiento es generalmente pequeño. La alteración de la leche pasteurizada mantenida a temperatura ambiente se debe principalmente a las bacterias termodúricas, siendo corrientemente B. cereus el organismo predominante en el momento de la alteración. Esta bacteria produce el defecto conocido como «nata amarga» y es el responsable del cortado «dulce» de la leche pasteurizada (esto es, de la coagulación por renina sin formación de cuajada ácida).





Las bacterias psicrotrofas, tan importantes en la leche cruda, se destruyen fácilmente por pasteurización, pero sus enzimas no se afectan (véase más adelante). Sin embargo, los psicrótrofos pueden constituir una causa importante de alteración de la leche pasteurizada, si después de aplicado este tratamiento tiene lugar la contaminación. Tal contaminación puede ser mínima, pero en condiciones de limpieza deficiente del utillaje es muy llamativa. Esta contaminación debe evitarse a toda costa, dado que la leche pasteurizada se almacena corrientemente a unos 7 ºC, temperatura a la que los psicrótrofos se desarrolla bien. La leche pasteurizada con una contaminación mínima, después de tratada, tiene una vida de almacén a 7 ºC de, al menos, 7 – 10 días.  La leche tratada a temperatura ultra alta (UHT) es una leche homogeneizada, sometida a una temperatura, no menor de 132 ºC durante, al menos, 1 segundo, proceso que convierte a la leche en prácticamente estéril. La manera en que originalmente se esterilizaba la leche consistía en mantenerla a unos l00 ºC durante 30 minutos en botellas herméticamente cerradas; esta leche se caracterizaba por presentar un sabor «a cocida» y una textura muy cremosa que, junto con su aspecto más obscuro, la convertía en un producto poco atractivo. 





La leche UHT carece de estas características y por lo tanto ha superado a la leche tradicional, esterilizada en las botellas. La leche UHT se envasa asépticamente en recipientes especiales de cartón (por ej., Tetrapak) que después se cierran con calor. Esta leche tiene el aspecto, el aroma y la calidad nutritiva de la pasterizada y permanece en condiciones aceptables varios meses, sin necesidad de refrigeración. La alteración de la leche UHT tiene lugar ocasionalmente debido al crecimiento de bacterias esporuladas, principalmente Bacillus stearothermophilus y B. subtilis, cuyas esporas o sobrevivieron al tratamiento o contaminaron a la leche procesada (Murray y Stewart, 1978). Es más corriente la alteración a consecuencia de la actividad continuada de proteasas y lipasas termoestables producidas por las bacterias psicrótrofas en la leche cruda. La gelación de la leche UHT, que también puede originarse por un proceso químico, es igualmente producido por las proteasas.




Entre los derivados lácteos, la manteca o mantequilla, comparativamente con otros, es un producto microbiológicamente estable ya que contiene poca humedad (15 %) y mucha grasa (80 %). El agua se presenta en forma de una fina emulsión en la fase grasa y las condiciones físicas de las gotitas de agua posiblemente ejercen un efecto inhibidor en el crecimiento microbiano. Además muchas mantequillas se salan hasta concentraciones que varían del 3 al 13 % de NaCl, lo que ayuda a su conservación. La fuente principal de microorganismos de la mantequilla es la crema con la que se elabora; en el caso de la mantequilla «dulce» se somete a pasterización. El batido de la crema para obtener mantequilla aumenta el número de microorganismos que se concentran en la mazada, pero al terminar el procesado su número es pequeño en la mantequilla y en las muy saladas acaece una disminución mayor durante el almacenamiento. Algunas mantequillas «dulces» se elaboran con un cultivo iniciador. Este cultivo, formado por bacterias conocidas, se inocula en la leche o crema para facilitar su acidificación en condiciones controladas, con lo que se alcanzan.en la mantequilla las características prefijadas y deseadas; en las mantequillas «dulces», la crema, una vez inoculada, se mantiene a temperaturas bajas para evitar que aumente la acidez antes del batido. Las mantequillas «ácidas» corrientemente se fabrican con crema pasterizada, inoculada con microorganismos iniciadores (Streptococcus lactis y S. cremoris generalmente); la crema se inocula a temperatura ambiente hasta que se alcanza un pH bajo (4,5-5). A continuación se bate, pero no se sala, ya queja sal y el ácido reaccionan dando aromas desagradables. Para producir ácido se necesitan recuentos bacterianos altos (107 a 108 por gramo). Como alternativa se permite la acidificación natural de la crema que se pasteriza después, antes del batido. Por lo tanto el contenido microbiano de las mantequillas recientes varia mucho, dependiendo del proceso de elaboración seguido; las «dulces» contienen muchos menos microorganismos que las «ácidas». La alteración de la mantequilla puede tener origen microbiano, enzimático o químico; muchos de los aromas perjudiciales proceden de la crema, pero este tipo de deterioro no se estudiará aquí. La alteración microbiana se debe principalmente a las bacterias psicrótrofas ya que la mantequilla se almacena corrientemente en refrigeración.



Las pseudomonadales y otros bacilos Gram negativos afines, que llegan al producto después de pasterizado, son corrientemente responsables de la rancidez producida por la hidrólisis de la grasa de la mantequilla, con liberación de ácidos grasos. La actividad proteolítica de Alteromonas putrefaciens, al desarrollarse en la superficie de la mantequilla da lugar a la aparición de olores pútridos y de pigmentaciones superficiales.
Los mohos también pueden crecer superficialmente originando coloraciones, generalmente están implicados miembros de los géneros Alternaria, Cladosporium, Aspergillus, Penicillium, Mucor y Rhizopus. Las lipasas de la crema pueden inducir rancidez y entre las reacciones químicas se incluye la oxidación de las grasas insaturadas. Quesos: Existen unas 400 variedades conocidas de quesos que se agrupan en unas 20 clases. La mayoría de ellas se elaboran con la misma leche variando los microorganismos, enzimas y sal adicionados y cambiando la temperatura durante la elaboración y maduración  Los quesos se clasifican por su textura y por su grado de dureza, admitiéndose dos grandes grupos: el primero, quesos madurados, varía desde los quesos muy duros, con poca humedad, quesos para rallar (por ej., parmesano), pasando por los duros (por ej., Cheddar), a los semiblandos, con mayor humedad (por ej., Stilton) y blandos (por ej., Camembert). El segundo grupo lo constituyen los quesos blandos, sin madurar, con un gran contenido de humedad (por ej., cottage).




La mayoría de los quesos se fabrican utilizando el mismo proceso básico. Actualmente se emplea generalmente leche pasterizada, pero la maduración acaece más lentamente y debido a que la flora natural ha sido en gran parte destruida, deben adicionarse a la leche cultivos bacterianos iniciadores. En el caso del queso Cheddar los cultivos iniciadores consisten en mezclas de diversas estirpes de Streptococcus lactis o en una mezcla de S. lactis y S. cremoris. Estas bacterias convierten la lactosa en ácido láctico, dando lugar a la primera fase de la elaboración de queso, esto es, a la acidificación o «maduración» de la leche. Cuando la leche ha alcanzado la acidez requerida, se le adiciona la renina que ayuda a la formación de la cuajada. Las últimas fases del proceso consisten en tratar la cuajada que, después de salada y prensada, se deja madurar; en el queso Cheddar la maduración dura unos 4 meses. El número máximo de microorganismos del cultivo iniciador, alcanzado durante la maduración del queso, corresponde a por gramo, pero después de unas 48 horas disminuyen los estreptococos. Son sustituidos por los lactobacilos que, en los quesos madurados, representan el 99 % de la población. Durante la maduración, los lactobacilos descomponen lentamente la proteína, lo que ayuda a la aromatización del queso; para aumentar el aroma a menudo se adicionan deliberadamente lactobacilos (por ej., L. acidophilus).  Al estudiar la alteración de los quesos debe hacerse hincapié en que los más duros, con menor contenido de humedad tienen una vida de almacén más larga que los que son blandos. La alteración microbiológica del queso Cheddar madurado se debe principalmente al crecimiento de mohos en la superficie que originan pigmentaciones, si bien penetran poco en el queso.



Son muchos los mohos y levaduras implicados en este tipo de alteración, como Penicillium (da coloración verde), Cladosporium (verde a negra) y Candida (negra). Sin embargo, los quesos más duros poseen una capa de cubrición de cera o presentan corteza, lo que minimiza el problema. En los últimos años se han hecho populares los quesos envasados a vacío en películas, tipo de envasado que evita el desarrollo fúngico al excluirse el aire. La alteración bacteriana de los quesos es más corriente durante su elaboración y maduración. Si el pH es demasiado alto, las pseudomonas, que son contaminantes siempre presentes, aunque en pequeño número, crecen rápidamente y originan viscosidad. El queso «gaseado» es un problema bastante corriente, debido a coliformes como Enterobacter sp., que fermentan la lactosa con producción de dióxido de carbono; algunos clostridios también dan lugar a este defecto. Se puede controlar añadiendo al queso nisina, un antibiótico producido por ciertas cepas de Streptococcus lactis. Este antibiótico es especialmente activo frente a clostridios de los quesos que poseen un pH alto. En los quesos pueden presentarse diversos defectos del sabor, siendo los más importantes el amargor y la rancidez; muchos de estos defectos se deben a microorganismos. Durante la elaboración no suelen surgir problemas si se utilizan buenos cultivos iniciadores y se mantiene un alto nivel higiénico.


El yogur es un producto lácteo fermentado elaborado por adición de un cultivo iniciador mixto (Lactobacillus bulgaricus y Streptococcus thermophilus) a la leche que se ha tratado térmicamente para destruir su flora autóctona. Como en el queso, durante la incubación a unos 45 ºC, se produce ácido láctico, lo que hace bajar el pH a 4,0; a sus características aromáticas contribuyen cantidades vestigiales de otros productos, como diacetilo y acetaldehído. Después de la incubación el yogur se enfría rápidamente a 4 ºC para evitar que continúe produciéndose ácido; su almacenamiento a baja temperatura y la acidez del producto aseguran su conservación frente a la alteración por bacterias proteolíticas y otras que no toleran la acidez. Los microorganismos iniciadores continúan creciendo a la temperatura de almacenamiento muy lentamente, lo que limita su vida útil de almacén a unas 4 semanas, pasadas las cuales el exceso de ácido producido altera su aroma.


c. ALTERACIONES EN HUEVOS Y EN OVOPRODUCTOS

Se admite generalmente que el huevo de gallina es estéril en el momento de la puesta, salvo que se haya infectado congénitamente, normalmente por salmonelas. La contaminación del huevo acaece después de la puesta y el acceso más corriente de los microorganismos al interior de aquél tiene lugar a través de grietas de la cáscara. La cáscara, que está cubierta por una membrana que repele el agua, actúa como una barrera mecánica, si está intacta; otra forma distinta de penetración de los microorganismos es a través de los poros que atraviesan la cáscara. Los poros están obturados, pero en los más grandes los «tapones» obturantes pueden faltar o cerrar deficientemente. La penetración se facilita por la humedad incorporada a los poros por efectos capilares. Debajo de la cáscara hay dos membranas que dificultan más la invasión bacteriana durante un tiempo limitado, pero que probablemente no constituyen barrera a las hifas infiltrativas de los mohos. La clara de los huevos contiene una serie de agentes antimicrobianos que limitan o inhiben por completo el crecimiento de los microorganismos invasores con tal que los niveles de contaminación sean bajos. La lisozima es muy eficaz frente a bacterias Gram positivas cuyas paredes celulares lisa, mientras que la conalbúmina, que es activa lo mismo frente a bacterias Gram positivas que Gram negativas, actúa como agente quelante, ligando el hierro que es esencial para el crecimiento. 


Sin embargo, la yema es una buena fuente de nutrientes y no contiene agentes inhibidores; por lo tanto cuando está implicada la yema, los microorganismos invasores crecen rápidamente. Esto puede ocurrir a los 10 días de puesto el huevo, cuando la yema contacta con la porción de aquél que ocupa la posición más alta. Si la penetración del huevo ha tenido lugar en la zona de la membrana testácea que contacta con la yema, los mecanismos de defensa del huevo sufren un «corto-circuito» por lo que cabe esperar que las bacterias invasoras se desarrollen rápidamente. La alteración de los huevos se debe fundamentalmente a las bacterias Gram negativas que producen manchas características. Aunque el contenido interno de los huevos frescos es generalmente estéril, los ovoproductos elaborados comercialmente (líquidos, congelados o desecados) suelen estar muy contaminados con bacterias. Especialmente en el caso de los huevos líquidos enteros se ha visto que frecuentemente están contaminados con salmonelas que resisten las temperaturas, relativamente bajas, utilizadas corrientemente por la industria panadera. En Argentina (SENASA) se promulgaron normas sobre tratamiento térmico y desde entonces todos los huevos líquidos enteros que vayan a distribuirse refrigerados, para su conservación por congelación o por desecación-atomización, deben pasterizarse a 64,4 ºC durante 2 minutos y medio y a continuación enfriarse inmediatamente. Las salmonelas más termorresistentes se destruyen con este tratamiento sin que se alteren las características de los huevos que se buscan en la industria panadera. De otra parte los huevos líquidos enteros, sometidos a pasterización y mantenidos en refrigeración permanecen en buenas condiciones, 6 días al menos, sin aumentos significativos de sus recuentos bacterianos, si bien debe evitarse la contaminación post-pasterización que se debe principalmente a coliformes.




Las claras se pasterizan de forma convencional, aunque todavía no sean obligatorias las normas que controlan su tratamiento térmico. La clara refrigerada, sin tratar por el calor, la alteran generalmente las pseudomonas y otros bacilos Gram negativos parecidos, mientras que en la pasterizada predominan, como agentes alterantes, los estreptococos fecales y los lactobacilos. Para destruir las salmonelas de las yemas líquidas se necesitan tratamientos térmicos más intensos, pero tampoco están en vigor las reglamentaciones o normas correspondientes.



d. ALTERACIONES EN VEGETALES (Verduras y Frutas)

Las verduras y frutas tan pronto como se recolectan experimentan cambios fisiológicos, algunos de los cuales determinan pérdidas de calidad. La actividad respiratoria implicada en la degradación de carbohidratos por los enzimas vegetales continúa y los cambios inducidos, sean ventajosos o perjudiciales, se ven muy influenciados por la madurez del vegetal en el momento de la recolección; por lo tanto los productos vegetales corrientemente pueden almacenarse bastante tiempo con pequeños cambios de calidad, si se recolectaron en el momento oportuno. Muchas frutas carnosas, como el plátano, se cosechan antes de su maduración que continúa después, pero las frutas cítricas sólo maduran satisfactoriamente en el árbol. El bajo pH (<4,5) de la mayoría de las frutas significa que su alteración se deberá fundamentalmente a los hongos. De otra parte el intervalo de pH de la mayoría de las hortalizas varía entre 5 y 7 por lo que su alteración podrán realizarla tanto mohos como bacterias, si bien los primeros constituyen el grupo principal.


De acuerdo con sus características alterativas los hongos se clasifican, de forma un tanto arbitraria, en dos grupos: los patógenos vegetales que atacan al vegetal antes de su recolección y los saprófitos que lo hacen después de la recolección. Una caracterítica importante de la mayoría de los microorganismos alterantes, tanto fúngicos como bacterianos, es su capacidad de secreción de enzimas pectolíticos que ablandan y desintegran los tejidos vegetales. Por lo tanto, el crecimiento de mohos en frutas y verduras generalmente causa una grave desintegración tisular originando zonas blandas mohosas; este tipo de alteración se conoce como «podredumbre». Los nombres que reciben las distintas podredumbres se basan en el aspecto del alimento alterado. Un agente importante de alteración es Penicillium, muchas de cuyas especies atacan a las frutas; posiblemente hasta el 30 % de todas las frutas alteradas se deben a este género. También son sensibles muchas verduras carnosas, como tomates y pepinos, así como patatas y remolachas. Otra importante alteración es la podredumbre blanda por Rhizopus que afecta a muchas frutas y hortalizas, especialmente durante el transporte en condiciones deficientes de refrigeración. Las fresas y patatas, una vez recolectadas, son atacadas a menudo y su alteración se presenta en forma de áreas blandas y mohosas con un micelio grisáceo que se aprecia fácilmente. Aunque las bacterias tienen una importancia limitada en la alteración de las frutas, en torno al 35 % de las pérdidas por alteración microbiana de los productos vegetales tienen este origen. Las bacterias responsables son principalmente miembros de los géneros Erwinia y Pseudomonas. Las formas más corrientes de alteración son las podredumbres blandas bacterianas que afectan a la mayoría de las hortalizas; la podredumbre blanda bacteriana también da lugar a infecciones antes de la recolección. Ciertas erwinias y pseudomonas, son importantes agentes patógenos de los vegetales, en los que producen enfermedades como royas, marchitamientos, úlceras y manchas en las hojas.




Las bacterias causantes de podredumbre blanda, de las que Erwinia carotovora es la más importante, se encuentran en las plantas en el momento de su recolección y generalmente penetran en ellas a través de lesiones tisulares. El crecimiento de estos microorganismos es tan rápido que los mohos no pueden competir por lo que generalmente no se aíslan de los vegetales que padecen podredumbre blanda bacteriana. Las bacterias causantes de ablandamiento forman muy pronto enzimas pectolíticos que en pocos días originan una gran degradación tisular. En el caso de las patatas todo el tubérculo puede convertirse en una masa blanda; en los tomates la piel puede permanecer intacta, mientras todo el resto se convierte en un líquido turbio y las verduras foliares se transforman en masas semilíquidas. Muchos microorganismos llegan a contaminar los productos vegetales durante su recolección y manipulación posterior. Por lo tanto conviene emplear un utillaje tan limpio como sea posible y minimizar las lesiones mecánicas de los productos vegetales; muchos de los microorganismos del exterior de frutas y verduras pueden eliminarse lavándolas con agua, si bien esta operación puede acortar su vida de almacén si no se escurren convenientemente. Es imprescindible un buen almacenamiento para reducir al mínimo el deterioro fisiológico y microbiológico. Corrientemente el almacenamiento se lleva a cabo en condiciones de frío (0 – 5 ºC), pero ciertos productos, como patatas y pepinos, se conservan mejor a 7 – 10 ºC. 



La humedad relativa óptima oscila entre 85 – 95 % y la vida de almacén puede mejorarse, por ejemplo, en manzanas y peras, por almacenamiento en atmósfera controlada (disminuyendo la concentración de oxígeno y aumentando la de dióxido de carbono). Las envolturas de plástico cerradas favorecen la presencia de alta humedad en su interior, lo que da por resultado un mayor deterioro microbiano.Las envolturas de plástico, con perforaciones, evitan en gran parte este problema, pero la humedad puede ser mayor que en los productos sin envolver. Pueden emplearse diversos productos químicos como tratamiento pre o post-recolección. En el último caso, como medidas corrientes de control se emplean baños o aspersiones con fungicidas/bactericidas a base de bórax (tetraborato sódico), ácido sórbico, fenilfenatos, difenilo y yodóforos así como fumigaciones con polvos que contienen azufre o SO2.








e. ALTERACIONES EN CEREALES

La flora microbiana de los granos de cereales recién recolectados, como maíz, trigo y avena, pueden llegar a muchos millones de bacterias y mohos por gramo. Sin embargo, la baja aw de los cereales inhibe eficazmente el crecimiento de todos los microorganismos siempre que las condiciones de almacenamiento sean las adecuadas, sin embargo, en condiciones de humedad es de esperar el crecimiento fúngico. Algunas fases implicadas en la fabricación de harina reducen la carga microbiana, siendo el blanqueado el más eficaz a este respecto. En las harinas convenientemente almacenadas los recuentos fúngicos permanecen constantes, unos pocos millares por gramo, siendo las especies más corrientemente aisladas las de los géneros Penicillium, Aspergillus y Rhizopus. Las bacterias disminuyen en número durante el almacenamiento, siendo corrientes los recuentos menores de 1.000 por gramo; Bacillus sp. es el grupo dominante. Cuando la humedad supera los límites normales es posible el desarrollo fúngico y silos niveles de aw son todavía mayores ocurrirá el crecimiento de Bacillus sp.


El pan producido comercialmente tiene una humedad lo suficientemente baja como para inhibir el crecimiento de la mayoría de los microorganismos, exceptuados los mohos que son los principales agentes alterantes; de hecho se ha señalado que los mohos son los responsables del 1 % de las pérdidas anuales de la producción de pan. Entre los más corrientes figuran Rhizopus nigricans, el «moho del pan» que origina puntos negros característicos constituidos por esporangios, Penicillium y Aspergillus sp. que producen abundantes conidios verdes y Neurospora sitophila, el «moho rojo» del pan. La alteración fúngica la favorecen el cortado en rebanadas del pan, su envasado estando demasiado caliente y el almacenamiento en un ambiente cálido y húmedo. La filamentosidad del pan, producida por Bacillus sp., raramente se ve ahora en el pan producido industrialmente. Se caracteriza inicialmente por manchas marrones que se acompañan de un olor desagradable y más tarde se produce desintegración de la miga y de las rebanadas; la alteración se debe a la hidrólisis de la proteína de la harina y del almidón que dan lugar a un pan pegajoso y filamentoso. Como mejor se controla es mediante el almacenamiento a baja temperatura, con adición de conservadores (por ej., propionato de calcio o ácido sórbico) y empleando una harina de buena calidad .



Los mohos son los responsables de la mayoría de los problemas alterativos de los productos de bollería, si bien la situación se complica por la gran variedad de ingredientes que puede incorporárseles, algunos de los cuales, como nata y crema de imitación, natillas y chocolates han estado implicados en brotes de toxiinfecciones alimentarias. Generalmente el crecimiento de mohos, también se controla, como en el pan, con temperaturas de almacenamiento bajas y niveles de aw bajos, junto con el empleo de conservadores.








"SOMOS LO QUE HACEMOS REPETIDAMENTE. EXCELENCIA, POR LO TANTO, NO ES UN ACTO SINO UN HÁBITO"

ARISTOTELES







LEGALES: El autor no asume responsabilidad alguna por la descarga, copia, distribución, modificación o alteración de los contenidos publicados, sean propios del mismo o de terceros, los cuales pudieren estar protegidos por Copyright, Derechos de Propiedad Intelectual, Derechos de Autor, o relacionados. La Bibliografía del tema expuesto y el crédito fotográfico está en poder del Autor y no se publica dada su extensión, pero se enviará por mail al interesado que la solicitare debidamente fundamentada.


Comentarios

Entradas más populares de este blog

GUÍA PRACTICA DEL LABORATORIO MICROBIOLOGICO DE AGUAS Y ALIMENTOS (PARTE 8)

Historia de la Bromatología

ENTEROBACTERIAS (Parte 1)